Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Med ; 5(5): 386-400, 2024 May 10.
Article En | MEDLINE | ID: mdl-38574740

The pivotal role of TL1A in modulating immune pathways crucial for inflammatory bowel disease (IBD) and intestinal fibrosis offers a promising therapeutic target. Phase 2 trials (TUSCANY and ARTEMIS-UC) evaluating an anti-TL1A antibody show progress in expanding IBD therapeutic options. First-in-human data reveal reduced expression of genes associated with extracellular matrix remodeling and fibrosis post-anti-TL1A treatment. Investigational drug TEV-48574, potentially exerting dual antifibrotic and anti-inflammatory effects, is undergoing a phase 2 basket study in both ulcerative colitis (UC) and Crohn disease (CD). Results are eagerly awaited, marking advancements in IBD therapeutics. This critical review comprehensively examines the existing literature, illuminating TL1A and the intricate role of DR3 in IBD, emphasizing the evolving therapeutic landscape and ongoing clinical trials, with potential implications for more effective IBD management.


Fibrosis , Inflammatory Bowel Diseases , Tumor Necrosis Factor Ligand Superfamily Member 15 , Humans , Fibrosis/drug therapy , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Inflammation/drug therapy , Inflammation/immunology , Crohn Disease/drug therapy , Crohn Disease/immunology , Crohn Disease/pathology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
2.
Diagnostics (Basel) ; 14(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38667503

Eosinophilic Gastrointestinal Disorders (EGIDs) are a group of conditions characterized by abnormal eosinophil accumulation in the gastrointestinal tract. Among these EGIDs, Eosinophilic Esophagitis (EoE) is the most well documented, while less is known about Eosinophilic Gastritis (EoG), Eosinophilic Enteritis (EoN), and Eosinophilic Colitis (EoC). The role of endoscopy in EGIDs is pivotal, with applications in diagnosis, disease monitoring, and therapeutic intervention. In EoE, the endoscopic reference score (EREFS) has been shown to be accurate in raising diagnostic suspicion and effective in monitoring therapeutic responses. Additionally, endoscopic dilation is the first-line treatment for esophageal strictures. For EoG and EoN, while the literature is more limited, common endoscopic findings include erythema, nodules, and ulcerations. Histology remains the gold standard for diagnosing EGIDs, as it quantifies eosinophilic infiltration. In recent years, there have been significant advancements in the histological understanding of EoE, leading to the development of diagnostic scores and the identification of specific microscopic features associated with the disease. However, for EoG, EoN, and EoC, precise eosinophil count thresholds for diagnosis have not yet been established. This review aims to elucidate the role of endoscopy and histology in the diagnosis and management of the three main EGIDs and to analyze their strengths and limitations, their interconnection, and future research directions.

3.
Comput Struct Biotechnol J ; 23: 626-637, 2024 Dec.
Article En | MEDLINE | ID: mdl-38274997

Gut microbiota is recognized nowadays as one of the key players in the development of several gastro-intestinal diseases. The first studies focused mainly on healthy subjects with staining of main bacterial species via culture-based techniques. Subsequently, lots of studies tried to focus on principal esophageal disease enlarged the knowledge on esophageal microbial environment and its role in pathogenesis. Gastro Esophageal Reflux Disease (GERD), the most widespread esophageal condition, seems related to a certain degree of mucosal inflammation, via interleukin (IL) 8 potentially enhanced by bacterial components, lipopolysaccharide (LPS) above all. Gram- bacteria, producing LPS), such as Campylobacter genus, have been found associated with GERD. Barrett esophagus (BE) seems characterized by a Gram- and microaerophils-shaped microbiota. Esophageal cancer (EC) development leads to an overturn in the esophageal environment with the shift from an oral-like microbiome to a prevalently low-abundant and low-diverse Gram--shaped microbiome. Although underinvestigated, also changes in the esophageal microbiome are associated with rare chronic inflammatory or neuropathic disease pathogenesis. The paucity of knowledge about the microbiota-driven mechanisms in esophageal disease pathogenesis is mainly due to the scarce sensitivity of sequencing technology and culture methods applied so far to study commensals in the esophagus. However, the recent advances in molecular techniques, especially with the advent of non-culture-based genomic sequencing tools and the implementation of multi-omics approaches, have revolutionized the microbiome field, with promises of implementing the current knowledge, discovering more mechanisms underneath, and giving insights into the development of novel therapies aimed to re-establish the microbial equilibrium for ameliorating esophageal diseases..

4.
Gut ; 73(2): 350-360, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37949638

OBJECTIVE: The gut virome is a dense community of viruses inhabiting the gastrointestinal tract and an integral part of the microbiota. The virome coexists with the other components of the microbiota and with the host in a dynamic equilibrium, serving as a key contributor to the maintenance of intestinal homeostasis and functions. However, this equilibrium can be interrupted in certain pathological states, including inflammatory bowel disease, causing dysbiosis that may participate in disease pathogenesis. Nevertheless, whether virome dysbiosis is a causal or bystander event requires further clarification. DESIGN: This review seeks to summarise the latest advancements in the study of the gut virome, highlighting its cross-talk with the mucosal microenvironment. It explores how cutting-edge technologies may build upon current knowledge to advance research in this field. An overview of virome transplantation in diseased gastrointestinal tracts is provided along with insights into the development of innovative virome-based therapeutics to improve clinical management. RESULTS: Gut virome dysbiosis, primarily driven by the expansion of Caudovirales, has been shown to impact intestinal immunity and barrier functions, influencing overall intestinal homeostasis. Although emerging innovative technologies still need further implementation, they display the unprecedented potential to better characterise virome composition and delineate its role in intestinal diseases. CONCLUSIONS: The field of gut virome is progressively expanding, thanks to the advancements of sequencing technologies and bioinformatic pipelines. These have contributed to a better understanding of how virome dysbiosis is linked to intestinal disease pathogenesis and how the modulation of virome composition may help the clinical intervention to ameliorate gut disease management.


Inflammatory Bowel Diseases , Microbiota , Viruses , Humans , Virome , Dysbiosis , Inflammatory Bowel Diseases/therapy
5.
Microorganisms ; 11(10)2023 Sep 22.
Article En | MEDLINE | ID: mdl-37894027

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by chronic abdominal pain and altered bowel habits. It can be subclassified in different subtypes according to the main clinical manifestation: constipation, diarrhea, mixed, and unclassified. Over the past decade, the role of gut microbiota in IBS has garnered significant attention in the scientific community. Emerging research spotlights the intricate involvement of microbiota dysbiosis in IBS pathogenesis. Studies have demonstrated reduced microbial diversity and stability and specific microbial alterations for each disease subgroup. Microbiota-targeted treatments, such as antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and even diet, offer exciting prospects for managing IBS. However, definitive conclusions are hindered by the heterogeneity of these studies. Further research should focus on elucidating the mechanisms, developing microbiome-based diagnostics, and enabling personalized therapies tailored to an individual's microbiome profile. This review takes a deep dive into the microscopic world inhabiting our guts, and its implications for IBS. Our aim is to elucidate the complex interplay between gut microbiota and each IBS subtype, exploring novel microbiota-targeted treatments and providing a comprehensive overview of the current state of knowledge.

6.
Microorganisms ; 11(8)2023 Aug 15.
Article En | MEDLINE | ID: mdl-37630649

Endometriosis and irritable bowel syndrome (IBS) are chronic conditions affecting up to 10% of the global population, imposing significant burdens on healthcare systems and patient quality of life. Interestingly, around 20% of endometriosis patients also present with symptoms indicative of IBS. The pathogenesis of both these multifactorial conditions remains to be fully elucidated, but connections to gut microbiota are becoming more apparent. Emerging research underscores significant differences in the gut microbiota composition between healthy individuals and those suffering from either endometriosis or IBS. Intestinal dysbiosis appears pivotal in both conditions, exerting an influence via similar mechanisms. It impacts intestinal permeability, triggers inflammatory reactions, and initiates immune responses. Furthermore, it is entwined in a bidirectional relationship with the brain, as part of the gut-brain axis, whereby dysbiosis influences and is influenced by mental health and pain perception. Recent years have witnessed the development of microbiota-focused therapies, such as low FODMAP diets, prebiotics, probiotics, antibiotics, and fecal microbiota transplantation, designed to tackle dysbiosis and relieve symptoms. While promising, these treatments present inconsistent data, highlighting the need for further research. This review explores the evidence of gut dysbiosis in IBS and endometriosis, underscoring the similar role of microbiota in both conditions. A deeper understanding of this common mechanism may enable enhanced diagnostics and therapeutic advancements.

7.
Nat Commun ; 14(1): 3212, 2023 06 03.
Article En | MEDLINE | ID: mdl-37270547

Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.


Enhancer Elements, Genetic , Histones , Humans , Histones/genetics , Histones/metabolism , Enhancer Elements, Genetic/genetics , Cell Differentiation/genetics , Chromatin/genetics , Promoter Regions, Genetic/genetics
8.
EBioMedicine ; 91: 104567, 2023 May.
Article En | MEDLINE | ID: mdl-37062177

BACKGROUND: In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS: We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS: Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION: Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING: Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).


Diabetes Mellitus, Type 1 , Humans , Intestinal Mucosa/metabolism , Dysbiosis/metabolism , RNA, Ribosomal, 16S/metabolism , Mucins/metabolism , Mucus/metabolism , RNA, Messenger/metabolism
9.
Gut ; 72(10): 1838-1847, 2023 10.
Article En | MEDLINE | ID: mdl-36788014

OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN: HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS: HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION: This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.


Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/pathology , Virome , Mice, Inbred C57BL , Colon/pathology , Colitis/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Disease Models, Animal , Dextran Sulfate
10.
Diabetologia ; 66(4): 695-708, 2023 04.
Article En | MEDLINE | ID: mdl-36692510

AIMS/HYPOTHESIS: Islet autoantibodies (AAbs) are detected in >90% of individuals with clinically suspected type 1 diabetes at disease onset. A single AAb, sometimes at low titre, is often detected in some individuals, making their diagnosis uncertain. Type 1 diabetes genetic risk scores (GRS) are a useful tool for discriminating polygenic autoimmune type 1 diabetes from other types of diabetes, particularly the monogenic forms, but testing is not routinely performed in the clinic. Here, we used a type 1 diabetes GRS to screen for monogenic diabetes in individuals with weak evidence of autoimmunity, i.e. with a single AAb at disease onset. METHODS: In a pilot study, we genetically screened 142 individuals with suspected type 1 diabetes, 42 of whom were AAb-negative, 27 of whom had a single AAb (single AAb-positive) and 73 of whom had multiple AAbs (multiple AAb-positive) at disease onset. Next-generation sequencing (NGS) was performed in 41 AAb-negative participants, 26 single AAb-positive participants and 60 multiple AAb-positive participants using an analysis pipeline of more than 200 diabetes-associated genes. RESULTS: The type 1 diabetes GRS was significantly lower in AAb-negative individuals than in those with a single and multiple AAbs. Pathogenetic class 4/5 variants in MODY or monogenic diabetes genes were identified in 15/41 (36.6%) AAb-negative individuals, while class 3 variants of unknown significance were identified in 17/41 (41.5%). Residual C-peptide levels at diagnosis were higher in individuals with mutations compared to those without pathogenetic variants. Class 3 variants of unknown significance were found in 11/26 (42.3%) single AAb-positive individuals, and pathogenetic class 4/5 variants were present in 2/26 (7.7%) single AAb-positive individuals. No pathogenetic class 4/5 variants were identified in multiple AAb-positive individuals, but class 3 variants of unknown significance were identified in 19/60 (31.7%) patients. Several patients across the three groups had more than one class 3 variant. CONCLUSIONS/INTERPRETATION: These findings provide insights into the genetic makeup of patients who show weak evidence of autoimmunity at disease onset. Absence of islet AAbs or the presence of a single AAb together with a low type 1 diabetes GRS may be indicative of a monogenic form of diabetes, and use of NGS may improve the accuracy of diagnosis.


Diabetes Mellitus, Type 1 , Humans , Autoimmunity/genetics , Pilot Projects , Autoantibodies , Risk Factors
11.
J Transl Med ; 21(1): 46, 2023 01 25.
Article En | MEDLINE | ID: mdl-36698146

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic immune-mediated rare disease, characterized by esophageal dysfunctions. It is likely to be primarily activated by food antigens and is classified as a chronic disease for most patients. Therefore, a deeper understanding of the pathogenetic mechanisms underlying EoE is needed to implement and improve therapeutic lines of intervention and ameliorate overall patient wellness. METHODS: RNA-seq data of 18 different studies on EoE, downloaded from NCBI GEO with faster-qdump ( https://github.com/ncbi/sra-tools ), were batch-corrected and analyzed for transcriptomics and metatranscriptomics profiling as well as biological process functional enrichment. The EoE TaMMA web app was designed with plotly and dash. Tabula Sapiens raw data were downloaded from the UCSC Cell Browser. Esophageal single-cell raw data analysis was performed within the Automated Single-cell Analysis Pipeline. Single-cell data-driven bulk RNA-seq data deconvolution was performed with MuSiC and CIBERSORTx. Multi-omics integration was performed with MOFA. RESULTS: The EoE TaMMA framework pointed out disease-specific molecular signatures, confirming its reliability in reanalyzing transcriptomic data, and providing new EoE-specific molecular markers including CXCL14, distinguishing EoE from gastroesophageal reflux disorder. EoE TaMMA also revealed microbiota dysbiosis as a predominant characteristic of EoE pathogenesis. Finally, the multi-omics analysis highlighted the presence of defined classes of microbial entities in subsets of patients that may participate in inducing the antigen-mediated response typical of EoE pathogenesis. CONCLUSIONS: Our study showed that the complex EoE molecular network may be unraveled through advanced bioinformatics, integrating different components of the disease process into an omics-based network approach. This may implement EoE management and treatment in the coming years.


Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/genetics , Multiomics , Dysbiosis/complications , Reproducibility of Results , Allergens
12.
Cell Mol Gastroenterol Hepatol ; 15(3): 741-764, 2023.
Article En | MEDLINE | ID: mdl-36521659

BACKGROUND AND AIMS: Perianal fistula represents one of the most disabling manifestations of Crohn's disease (CD) due to complete destruction of the affected mucosa, which is replaced by granulation tissue and associated with changes in tissue organization. To date, the molecular mechanisms underlying perianal fistula formation are not well defined. Here, we dissected the tissue changes in the fistula area and addressed whether a dysregulation of extracellular matrix (ECM) homeostasis can support fistula formation. METHODS: Surgical specimens from perianal fistula tissue and the surrounding region of fistulizing CD were analyzed histologically and by RNA sequencing. Genes significantly modulated were validated by real-time polymerase chain reaction, Western blot, and immunofluorescence assays. The effect of the protein product of TNF-stimulated gene-6 (TSG-6) on cell morphology, phenotype, and ECM organization was investigated with endogenous lentivirus-induced overexpression of TSG-6 in Caco-2 cells and with exogenous addition of recombinant human TSG-6 protein to primary fibroblasts from region surrounding fistula. Proliferative and migratory assays were performed. RESULTS: A markedly different organization of ECM was found across fistula and surrounding fistula regions with an increased expression of integrins and matrix metalloproteinases and hyaluronan (HA) staining in the fistula, associated with increased newly synthesized collagen fibers and mechanosensitive proteins. Among dysregulated genes associated with ECM, TNFAI6 (gene encoding for TSG-6) was as significantly upregulated in the fistula compared with area surrounding fistula, where it promoted the pathological formation of complexes between heavy chains from inter-alpha-inhibitor and HA responsible for the formation of a crosslinked ECM. There was a positive correlation between TNFAI6 expression and expression of mechanosensitive genes in fistula tissue. The overexpression of TSG-6 in Caco-2 cells promoted migration, epithelial-mesenchymal transition, transcription factor SNAI1, and HA synthase (HAs) levels, while in fibroblasts, isolated from the area surrounding the fistula, it promoted an activated phenotype. Moreover, the enrichment of an HA scaffold with recombinant human TSG-6 protein promoted collagen release and increase of SNAI1, ITGA4, ITGA42B, and PTK2B genes, the latter being involved in the transduction of responses to mechanical stimuli. CONCLUSIONS: By mediating changes in the ECM organization, TSG-6 triggers the epithelial-mesenchymal transition transcription factor SNAI1 through the activation of mechanosensitive proteins. These data point to regulators of ECM as new potential targets for the treatment of CD perianal fistula.


Crohn Disease , Rectal Fistula , Humans , Crohn Disease/pathology , Caco-2 Cells , Epithelial-Mesenchymal Transition , Rectal Fistula/complications , Rectal Fistula/metabolism , Rectal Fistula/therapy , Transcription Factors/metabolism , Extracellular Matrix/metabolism
13.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Article En | MEDLINE | ID: mdl-36409826

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Fucose/metabolism , Signal Transduction , Brain Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Line, Tumor
14.
Biomedicines ; 10(3)2022 Mar 19.
Article En | MEDLINE | ID: mdl-35327517

Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent about 25% of the emission mass; these particles have a great surface area and consequently high capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation, and resolution processes, suggesting the importance of understanding lipid modifications induced by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover, the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2, MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced tissue damage.

15.
Inflamm Bowel Dis ; 28(6): 971-976, 2022 06 03.
Article En | MEDLINE | ID: mdl-35032171

The JAK/STAT inhibitor tofacitinib, recently approved for the treatment of ulcerative colitis, is found to modulate the intestinal endothelial barrier functions in directing the leukocyte adhesion and transmigration in ulcerative colitis patients displaying high levels of endothelial STAT3/STAT6 phosphorylation.


Colitis, Ulcerative , Colitis, Ulcerative/drug therapy , Humans , Leukocytes , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
16.
Nat Commun ; 13(1): 161, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013317

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Cognitive Dysfunction/genetics , Epilepsies, Myoclonic/genetics , Hippocampus/metabolism , Interneurons/metabolism , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sudden Unexpected Death in Epilepsy/prevention & control , Action Potentials/physiology , Animals , Cerebellum/metabolism , Cerebellum/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Epilepsies, Myoclonic/metabolism , Epilepsies, Myoclonic/physiopathology , Epilepsies, Myoclonic/prevention & control , Gene Knock-In Techniques , Genetic Therapy/methods , Hippocampus/physiopathology , Humans , Interneurons/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel/deficiency , Sudden Unexpected Death in Epilepsy/pathology
17.
Nat Rev Gastroenterol Hepatol ; 19(3): 169-184, 2022 03.
Article En | MEDLINE | ID: mdl-34876680

Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Chronic Disease , Crohn Disease/drug therapy , Fibrosis , Humans , Inflammation/complications , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/therapy
18.
Front Immunol ; 13: 1089987, 2022.
Article En | MEDLINE | ID: mdl-36713378

Introduction: The integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists. Methods: Here we restored GB integrity in the NOD mice through administration of an anti-inflammatory diet (AID- enriched in soluble fiber inulin and omega 3-PUFA) and tested the effect on T1D pathogenesis. Results: We found that the AID prevented T1D in NOD mice by restoring GB integrity with increased mucus layer thickness and higher mRNA transcripts of structural (Muc2) and immunoregulatory mucins (Muc1 and Muc3) as well as of tight junction proteins (claudin1). Restoration of GB integrity was linked to reduction of intestinal inflammation (i.e., reduced expression of IL-1ß, IL-23 and IL-17 transcripts) and expansion of regulatory T cells (FoxP3+ Treg cells and IL-10+ Tr1 cells) at the expenses of effector Th1/Th17 cells in the intestine, pancreatic lymph nodes (PLN) and intra-islet lymphocytes (IIL) of AID-fed NOD mice. Importantly, the restoration of GB integrity and immune homeostasis were associated with enhanced concentrations of anti-inflammatory metabolites of the ω3/ω6 polyunsaturated fatty acids (PUFA) and arachidonic pathways and modifications of the microbiome profile with increased relative abundance of mucus-modulating bacterial species such as Akkermansia muciniphila and Akkermansia glycaniphila. Discussion: Our data provide evidence that the restoration of GB integrity and intestinal immune homeostasis through administration of a tolerogenic AID that changed the gut microbial and metabolic profiles prevents autoimmune T1D in preclinical models.


Diabetes Mellitus, Type 1 , Mice , Animals , Mice, Inbred NOD , Inulin/pharmacology , Diet , Inflammation , Homeostasis , Anti-Inflammatory Agents
19.
Front Physiol ; 12: 783295, 2021.
Article En | MEDLINE | ID: mdl-34938203

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.

20.
Neurooncol Adv ; 3(1): vdab076, 2021.
Article En | MEDLINE | ID: mdl-34377986

BACKGROUND: The radio- and chemo-resistance of glioblastoma stem-like cells (GSCs), together with their innate tumor-initiating aptitude, make this cell population a crucial target for effective therapies. However, targeting GSCs is hardly difficult and complex, due to the presence of the blood-brain barrier (BBB) and the infiltrative nature of GSCs arousing their dispersion within the brain parenchyma. METHODS: Liposomes (LIPs), surface-decorated with an Apolipoprotein E-modified peptide (mApoE) to enable BBB crossing, were loaded with doxorubicin (DOXO), as paradigm of cytotoxic drug triggering immunogenic cell death (ICD). Patient-derived xenografts (PDXs) obtained by GSC intracranial injection were treated with mApoE-DOXO-LIPs alone or concomitantly with radiation. RESULTS: Our results indicated that mApoE, through the engagement of the low-density lipoprotein receptor (LDLR), promotes mApoE-DOXO-LIPs transcytosis across the BBB and confers target specificity towards GSCs. Irradiation enhanced LDLR expression on both BBB and GSCs, thus further promoting LIP diffusion and specificity. When administered in combination with radiations, mApoE-DOXO-LIPs caused a significant reduction of in vivo tumor growth due to GSC apoptosis. GSC apoptosis prompted microglia/macrophage phagocytic activity, together with the activation of the antigen-presenting machinery crucially required for anti-tumor adaptive immune response. CONCLUSIONS: Our results advocate for radiotherapy and adjuvant administration of drug-loaded, mApoE-targeted nanovectors as an effective strategy to deliver cytotoxic molecules to GSCs at the surgical tumor margins, the forefront of glioblastoma (GBM) recurrence, circumventing BBB hurdles. DOXO encapsulation proved in situ immune response activation within GBM microenvironment.

...